Vision Screener Update: | Vision Screen | Objective Screeners


Date: April 10, 2020


Summary: Portable instrument-based technology for early detection of amblyopia and amblyopia risk factors (ARF)



















Nuremburg Germany












In (99177)





(+) infrared multi-axial, precise, sturdy handle, Excellent referral criteria selection (-) slower on high errors



S12, A12



In (99177)





(+)infrared multi-axial, precise, AA batteries, sturdy handles, Excellent referral criteria selection (-) slower on high errors



S09, A09











S08 desk











S04 desk








(+) fast and child-friendly, rapid, convenient user output, Christian Schmidt (-) requires windows computer and firewire cables





iScreen, Memphis, TN

Cent (99174)












19, AAPOS20




(+)excellent centered red reflex and reading center, Jack Bellows  (-) single image- current model too large











(+) fastest and best for delayed kids (-_ single axis






Adaptica (Padova, Italy)

In (99177)





(+) infrared multiaxial, accurate refraction, Mario Angi (-) old touch buttons and small screen














CR function








(+) infrared occluder for strabismus



Kaleidos case








(+) luminance and distraction control, extra battery, tablet control WiFi or Bluetooth (-) too close for infants, big


GoCheck Kids





In (99177) or cent (99174)





(+) convenient familiar platform, portable, affordable per use pricing, central data control (-) wide-angle LED flash



Nokia 1020








(+) true flash (-) tape over flash



iPhone 7+








(+) familiar screen app (-) slow LED flash



Flash concentrate








(+) faster LED, two axis, fix on yellow square (-)



Glow fix








(+) relax accommodation (-) too interesting stays on











(+) could be public, (-) loss of doc control, less flash control





Welch Allyn

In (99177)





(+) infrared multiaxial, fast, big vendor (-) less precise axis, minimal upgrades


Cell V100



MediWorks Shanghai, China






(+) infrared photorefractor





Digital Eye Center, China






(+) infrarred, like SPOT

  HVS002     Hans Heiss, MercoFrames            





Rebion (prior PVS, Rebiscan)


Ambly-Stab35-38, AAPOS24,39




(+) birefringent binocular foveation, Hunter and Guyton, fixation instability (? Strabismic amblyopia), (-) heavy, hard to hold, frequent inconsistent interpretation






Only Rx, 92015

1,8,40-43 VIPS44, AAPOS1,23,45




(+) Hartman-Shack autorefractor, excellent refract ± cycloplegia, keratometry, printer (-) monocular, too close for infants, cost


Sure Sight



Welch Allyn


VIPS44,46, AAPOS47




(+) monocular remote 30cm autorefract, kid adds +2, VIPS calibrated (-) low PPV






Required reader






(+) Simple, sturdy, focus-in-dark, high predictive value possible, Howard Freedman (-) Polaroid film, needs interpret






Paired computer

Iowa67 AAPOS20,68




(+) original, Kodak digital camera with extra flash, David Granet (-) slow serial cables, too sensitive


Vision Research









(+) extensive Kindergarten experience, Keith Morgan (-) 35 mm film camera in frame


Video Refraction










(+) precursor to PlusoptiX











  Amblyopia Detection by Camera



Gateway DV-S20








(+) consumer $99 2megapixel non-zoom camera (-) low resolution



Canon TX1








(+) 10x zoom 7 megapixel camera, close flash-lens



iPhone 4








(+) precursor to iCheck Kids GCK (-) not override pre-flash



iPhone 7








(+) Screens facial photographs for leukocoria



iPhone 7








(+) more sensitive in real cases than CRADLE


Legend: “Now” indicates currently available or not, Devices have sometimes been produced with different versions.  Internal software interpretation versions also differ and are not all included here.  Interpretation by instrument referral guidelines either internal computer in screener on site (In) or sent to central expert reader for manual interpretation.  Comments include advantages (+) and disadvantages (-).


Video Examples on VIMEO:        

Community Impact of Photoscreening Programs48,56,61,76-80

General topics and reviews of photoscreening81-89

Uniform Validation Guidelines90,91

History and Development of Objective Vision Screening92-97



1.         Racano E, Alessi S, Pertile R. Comparison of 2Win and plusoptiX A12R refractometers with Retinomax handheld autorefractor keratometer. J AAPOS. 2019;23(5):276 e271-276 e275.

2.         Kirk S, Armitage MD, Dunn S, Arnold RW. Calibration and Validation of the 2WIN Photoscreener Compared to the PlusoptiX S12 and the SPOT. J Pediatr Ophthalmol Strabismus. 2014;51(5):1-4.

3.         Chang DA, Ede RC, Chow DC, et al. Early Childhood Vision Screening in Hawai'i Utilizing a Hand-Held Screener. Hawaii J Med Public Health. 2015;74(9):292-296.

4.         Arnold RW, Arnold AW, Armitage MD, Shen JM, Hepler TE, Woodard TL. Pediatric photoscreeners in high risk patients 2012: A comparison study of Plusoptix, iScreen and SPOT. Binoc Vis and Strabismus Quart. 2013;28(1):20-28.

5.         Li R, Huang D, Zhu H, et al. [The performance of visual photoscreening for Chinese preschool children aged 4 to 5 years]. Zhonghua Yan Ke Za Zhi. 2020;56(3):189-196.

6.         Zhang X, Wang J, Li Y, Jiang B. Diagnostic test accuracy of Spot and Plusoptix photoscreeners in detecting amblyogenic risk factors in children: a systemic review and meta-analysis. Ophthalmic Physiol Opt. 2019;39(4):260-271.

7.         Arnold RW, Tulip D, McArthur E, et al. Predictive value from pediatrician Plusoptix screening: Impact of refraction and binocular alignment. Binoc Vis and Strabismus Quart. 2012;27(4):227-232.

8.         Payerols A, Eliaou C, Trezeguet V, Villain M, Daien V. Accuracy of PlusOptix A09 distance refraction in pediatric myopia and hyperopia. BMC Ophthalmol. 2016;16:72.

9.         Singman E, Matta N, Tian J, Silbert D. A comparison of referral criteria used by the plusoptiX photoscreener. Strabismus. 2013;21(3):190-194.

10.       Singman E, Matta N, Fairward A, Silbert D. Evaluation of plusoptiX photoscreening during examinations of children with autism. Strabismus. 2013;21(2):103-105.

11.       Silbert DI, Matta NS, Andersen K. Plusoptix photoscreening may replace cycloplegic examination in select pediatric ophthalmology patients. J AAPOS. 2013;17(2):163-165.

12.       Wang J, Suh D. Comparison between the plusoptix and iScreen photoscreeners in detecting amblyopic risk factors in children (meeting abstract). J AAPOS. 2012;16(1):105.

13.       Saber Moghadam A, Alizadeh R, Zarei-Ghanavati M. Plusoptix S08 sensitivity in detecting strabismus as amblyogenic risk factor. Strabismus. 2013;21(4):230-234.

14.       Bloomberg J, Suh D. Performance of the plusoptix A08 photoscreener for the detection of amblyopia risk factors in children 0-5 in central Iowa (Meeting abstract). J AAPOS. 2012;16(1):105.

15.       Matta NS, Arnold RW, Singman EL, Silbert DI. Can a photoscreener help us remotely evaluate and manage amblyopia? Am Orthopt J. 2011;61:124-127.

16.       Matta NS, Arnold RW, Singman EL, Silbert DI. Comparison between the plusoptiX and MTI Photoscreeners. Arch Ophthalmol. 2009;127(12):1591-1595.

17.       Arnold RW, Davis B, Arnold LE, Rowe KS, Davis JM. Calibration and validation of nine objective vision screeners with contact lens-induced anisometropia. J Pediatr Ophthalmol Strabismus. 2013;50(3):184-190.

18.       Silbert DI, Matta NS, Arnold RW. Comparing The Iscreen To The Mti Photoscreener In Pediatric Vision Screening. IOVS. 2012.

19.       Kennedy R, Thomas D. Evaluation of the iScreen digital screening system for amblyogenic factors. Can J Ophthalmol. 2000;35(5):258-262.

20.       Kovtoun TA, Arnold RW. Calibration of photoscreeners for threshold contact- induced hyperopic anisometropia: Introduction of the JVC photoscreeners. JPOS. 2004;41(3):150-158.

21.       Angi MR, Bergamo L, Bisantis C. The binocular videorefractoscope for visual screening in infancy. Ger J Ophthalmol. 1993;2(3):182-188.

22.       Angi MR, Pucci V, Forattini F, Formentin PA. Results of photorefractometric screening for amblyogenic defects in children aged 20 months. Behav Brain Res. 1992;49(1):91-97.

23.       Arnold SL, Arnold AW, Sprano JH, Arnold RW. Performance of the 2WIN photoscreener with “CR” strabismus estimation in high risk patients. Am J Ophthalmol. 2019;207:195-203.

24.       Arnold RW. Comparative AAPOS validation of the blinq birefringent amblyopia screener with isolated small-angle strabismus. Clin Ophthalmol. 2020;14:325-329.

25.       Martin SJ, Htoo HE, Hser N, Arnold RW. Performance of two photoscreeners enhanced by protective containers. Clin Ophthalmol. 2020;14:Pending.

26.       Arnold RW, Arnold AW, Hunt-Smith TT, Grendahl RL, Winkle RK. The Positive Predictive Value of Smartphone Photoscreening in Pediatric Practices. J Pediatr Ophthalmol Strabismus. 2018;55(6):393-396.

27.       Law MX, Pimentel MF, Oldenburg CE, de Alba Campomanes AG. Positive predictive value and screening performance of GoCheck Kids in a primary care university clinic. J AAPOS. 2020.

28.       Arnold RW, O'Neil JW, Cooper KL, Silbert DI, Donahue SP. Evaluation of a smartphone photoscreener app to detect refractive amblyopia risk factors in children 1-6 years. Clin Ophthalmol. 2018;12:1533-1537.

29.       Silbert DI, Arnold RW. Do we need to directly detect astigmatism when photoscreening for amblyopia risk factors (ARFs)? 244. 2015;19(4):e61.

30.       Forcina BD, Peterseim MM, Wilson ME, et al. Performance of the Spot Vision Screener in Children Younger Than 3 Years of Age. Am J Ophthalmol. 2017;178:79-83.

31.       Feldman S, Peterseim MMW, Trivedi RH, Edward Wilson M, Cheeseman EW, Papa CE. Detecting High Hyperopia: The Plus Lens Test and the Spot Vision Screener. J Pediatr Ophthalmol Strabismus. 2017;54(3):163-167.

32.       de Jesus DL, Villela FF, Orlandin LF, Eiji FN, Dantas DO, Alves MR. Comparison between refraction measured by Spot Vision Screening and subjective clinical refractometry. Clinics (Sao Paulo). 2016;71(2):69-72.

33.       Ransbarger KM, Dunbar JA, Choi SE, Khazaeni LM. Results of a community vision-screening program using the Spot photoscreener. J AAPOS. 2013;17(5):516-520.

34.       Qian X, Li Y, Ding G, et al. Compared performance of Spot and SW800 photoscreeners on Chinese children. Br J Ophthalmol. 2019;103(4):517-522.

35.       Gramatikov BI. Detecting central fixation by means of artificial neural networks in a pediatric vision screener using retinal birefringence scanning. Biomed Eng Online. 2017;16(1):52.

36.       Jost RM, Yanni SE, Beauchamp CL, et al. Beyond Screening for Risk Factors: Objective Detection of Strabismus and Amblyopia. JAMA ophthalmology. 2014;132(7):814-820.

37.       Hunter DG, Piskun NV, Guyton DL, Gramatikov BI, Nassif DS. Clinical performance of the Pediatric Vision Screener. J AAPOS. 2004;8(1):107 (abstract).

38.       Hunter DG, Shah AS, Sau S, Nassif D, Guyton DL. Automated detection of ocular alignment with binocular retinal birefringence scanning. Appl Opt. 2003;42(16):3047-3053.

39.       Shah S, S., Jimenez JJ, Rozema E, Nguyen MK, Fong DS, Mehta AM. Validation of the Pediatric Vision Scanner in a Normal Preschool Population. Poster presented at American Academy of Ophthalmology; October 12, 2019, 2019; San Francisco, CA.

40.       Kinori M, Molina I, Hernandez EO, et al. The PlusoptiX Photoscreener and the Retinomax Autorefractor as Community-based Screening Devices for Preschool Children. Curr Eye Res. 2018:1-5.

41.       Fledelius HC, Bangsgaard R, Slidsborg C, laCour M. The usefulness of the Retinomax autorefractor for childhood screening validated against a Danish preterm cohort examined at the age of 4 years. Eye (Lond). 2015.

42.       Cordonnier M, Kallay O. Non-cycloplegic screening for refractive errors in children with the hand-held autorefractor Retinomax: final results and comparison with non-cycloplegic photoscreening. Strabismus. 2001;9(2):59-70.

43.       Margines JB, Huang C, Young A, et al. Refractive Errors and Amblyopia Among Children Screened by the UCLA Preschool Vision Program in Los Angeles County. Am J Ophthalmol. 2020;210:78-85.

44.       VIPS. Comparison of preschool vision screening tests as administered by licensed eye care professionals in the vision in preschoolers study. Ophthalmology. 2004;111(4):637-650.

45.       Arnold RW, Davis B, Arnold LE, Rowe KS, Davis JM. Calibration and validation of 9 objective vision screeners with contact-lens induced anisometropia. ABCD. Published 2012. Accessed 9/5/2012, 2012.

46.       VIPS, Dobson V, Quinn G, et al. Preschool vision screening tests administered by nurse screeners compared with lay screeners in the Vision in Preschoolers Study. IOVS. 2005;46:2639-2648.

47.       Lang D, Leman R, Arnold AW, Arnold RW. Validated portable pediatric vision screening in the Alaska Bush. A VIPS-like study in the Koyukon. Alaska Med. 2007;49(1):2-15.

48.       Longmuir SQ, Boese EA, Pfeifer W, Zimmerman B, Short L, Scott WE. Practical community photoscreening in very young children. Pediatrics. 2013;131(3):e764-769.

49.       Leman RE, Clausen MM, Bates J, Stark L, Arnold KK, Arnold RW. A comparison of patched HOTV visual acuity and photoscreening. J Sch Nurs. 2006;22(4):237-243.

50.       Arnold RW, Donahue SP. The yield and challenges of charitable state-wide photoscreening. Binocul Vis Strabismus Q. 2006;21(2):93-100.

51.       Salcido AA, Bradley J, Donahue SP. Predictive value of photoscreening and traditional screening of preschool children. J Aapos. 2005;9(2):114-120.

52.       Arnold RW, Armitage MD, Gionet EG, et al. The cost and yield of photoscreening: impact of photoscreening on overall pediatric ophthalmic costs. J Pediatr Ophthalmol Strabismus. 2005;42(2):103-111.

53.       Arnold RW. Pseudo-false positive eye/vision photoscreening due to accommodative insufficiency. A serendipitous benefit for poor readers? Binocul Vis Strabismus Q. 2004;19(2):75-80.

54.       Salcido AA, Johnson T, Bradley J, Donahue SP. Predictive value of photoscreening and traditional screening of preschool children. Paper presented at: AAPOS Annual Meeting; 3/24/2003, 2003; Waikoloa, Hawaii.

55.       Enzenauer RW. The efficacy of photoscreening for amblyopiagenic factors in a high risk population. Binocul Vis Strabismus Q. 2003;18(4):233-240.

56.       Arnold RW. Highly specific photoscreening at the Alaska State Fair: Valid Alaska Blind Child Discovery photoscreening and interpretation. Alaska Med. 2003;45(2):34-40.

57.       Donahue SP, Johnson TM, Ottar W, Scott WE. Sensitivity of photoscreening to detect high-magnitude amblyogenic factors. J AAPOS. 2002;6(2):86-91.

58.       Miller JM, Schwiegerling J, Leising-Hall H, Surachatkumtonekul T. Detection of improper fixation in MTI photoscreening images. J AAPOS. 2001;5(1):35-43.

59.       Tong PY, Macke JP, Bassin RE, et al. Screening for amblyopia in preverbal children with photoscreening photographs. III. improved grading criteria for hyperopia. Ophthalmology. 2000;107(9):1630-1636.

60.       Donahue SP, Johnson TM, Leonard-Martin TC. Screening for amblyogenic factors using a volunteer lay network and the MTI photoscreener. Initial results from 15,000 preschool children in a statewide effort. Ophthalmology. 2000;107(9):1637-1644; discussion 1645-1636.

61.       Arnold RW, Gionet E, Jastrzebski A, Kovtoun T, Armitage M, Coon L. The Alaska Blind Child Discovery project: Rationale, Methods and Results of 4000 screenings. Alaska Med. 2000;42:58-72.

62.       Weinand F, Graf M, Demming K. Sensitivity of the MTI photoscreener for amblyogenic factors in infancy and early childhood. Graefes Arch Clin Exp Ophthalmol. 1998;236(11):801-805.

63.       Tong P, Enke-Miyazaki E, Bassin R, et al. Screening for amblyopia in preverbal children with photoscreening photographs. Ophthalmol. 1998;105(5):856-863.

64.       Lewis R, Marsh-Tootle W. *The reliability of interpretation of photoscreening results with the MTI PS-100 in Headstart preschool children. J Am Optom Assoc. 1995;66(7):429-434.

65.       Freedman H, Preston K. Polaroid photoscreening for amblyogenic factors.  An improved technology. Ophthalmol. 1992;99:1785-1795.

66.       Yanovitch T, Wallace DK, Freedman SF, et al. The accuracy of photoscreening at detecting treatable ocular conditions in children with Down syndrome. J AAPOS. 2010;14(6):472-477.

67.       Ottar WL, Scott WE, Holgado SI. Photoscreening for amblyogenic factors. J Pediatr Ophthalmol Strabismus. 1995;32:289-295.

68.       Granet D, Hoover A, Smith A, Brown S, Bartsch D-U, Brody B. A new objective digital computerized vision screening system. JPOS. 1999;36(5):251-256.

69.       Morgan KS, Kennemer JC. Off-axis photorefractive eye screening in children. J Cataract Refract Surg. 1997;23(3):423-428.

70.       Williams C, Harrad RA, Harvey I, Sparrow JM. Screening for amblyopia in preschool children: results of a population- based, randomised controlled trial. ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood. Ophthalmic Epidemiol. 2001;8(5):279-295.

71.       Arnold RW, Clausen M, Ryan H, Leman RE, Armitage D. Predictive value of inexpensive digital eye and vision photoscreening: "PPV of ABCD". Binocul Vis Strabismus Q. 2007;22(3):148-152.

72.       Arnold RW, Arnold AW, Stark L, Arnold KK, Leman RE, Armitage MD. Amblyopia detection by camera (ADBC): Gateway to portable, inexpensive, vision screening. Alaska Med. 2004;46(3):63-72.

73.       Khedekar A, Devarajan B, Ramasamy K, Muthukkaruppan V, Kim U. Smartphone-based application improves the detection of retinoblastoma. Eye (Lond). 2019;33(6):896-901.

74.       Munson MC, Plewman DL, Baumer KM, et al. Autonomous early detection of eye disease in childhood photographs. Sci Adv. 2019;5(10):eaax6363.

75.       Vagge A, Wangtiraumnuay N, Pellegrini M, Scotto R, Iester M, Traverso CE. Evaluation of a Free Public Smartphone Application to Detect Leukocoria in High-Risk Children Aged 1 to 6 Years. J Pediatr Ophthalmol Strabismus. 2019;56(4):229-232.

76.       Teed RG, Bui CM, Morrison DG, Estes RL, Donahue SP. Amblyopia therapy in children identified by photoscreening. Ophthalmology. 2010;117(1):159-162.

77.       Longmuir SQ, Pfeifer W, Leon A, Olson RJ, Short L, Scott WE. Nine-year results of a volunteer lay network photoscreening program of 147 809 children using a photoscreener in Iowa. Ophthalmology. 2010;117(10):1869-1875.

78.       Kirk VG, Clausen MM, Armitage MD, Arnold RW. Preverbal photoscreening for amblyogenic factors and outcomes in amblyopia treatment: early objective screening and visual acuities. Arch Ophthalmol. 2008;126(4):489-492.

79.       Donahue SP, Lorenz S, Johnson T. Photo screening around the world: Lions Club International Foundation experience. Semin Ophthalmol. 2008;23(5):294-297.

80.       Vernacchio L, Trudell EK, McLaughlin SR, Bhambhani V. Effect of Instrument-Based Vision Screening for 3- to 5-Year-Old Children on Referrals to Eye Care Specialists. Clin Pediatr (Phila). 2019:9922819832020.

81.       O’hara MA. Instrument-based pediatric vision screening. Current Opinion Ophthalmology. 2016;27(0):1-4.

82.       Kerr N, Arnold R. Vision screening for children: current trends, technology and legislative issues. Curr Opin Ophthalmol. 2004;15:454-459.

83.       Silverstein E, Donahue SP. Preschool Vision Screening: Where We Have Been and Where We Are Going. Am J Ophthalmol. 2018;194:xviii-xxiii.

84.       Instrument-Based Vision Screening in Children. Pediatrics. 2017;139(1).

85.       Sanchez I, Ortiz-Toquero S, Martin R, de Juan V. Advantages, limitations, and diagnostic accuracy of photoscreeners in early detection of amblyopia: a review. Clin Ophthalmol. 2016;10:1365-1373.

86.       Simons K. Photoscreening [editorial]. Ophthalmology. 2000;107(9):1619-1620.

87.       Hartmann EE, Dobson V, Hainline L, Marsh-Tootle W, Quinn GE, Ruttum MS. Summary Statement. In: Hartmann EE, ed. Vision Screening in the Preschool Child. Vol 1. McLean, Virginia: National Maternal and Child Health Clearinghouse; 1998:3-15.

88.       Hamer R, Norcia A, Day S. Comparison of on- and off-axis photorefraction with cycloplegic retinoscopy in infants. J Pediatr Ophthalmol Strabismus. 1992;29:232-239.

89.       Force USPST, Grossman DC, Curry SJ, et al. Vision Screening in Children Aged 6 Months to 5 Years: US Preventive Services Task Force Recommendation Statement. JAMA. 2017;318(9):836-844.

90.       Donahue SP, Arthur B, Neely DE, Arnold RW, Silbert D, Ruben JB. Guidelines for automated preschool vision screening: A 10-year, evidence-based update. J AAPOS. 2013;17(1):4-8.

91.       Donahue S, Arnold R, Ruben JB. Preschool vision screening: What should we be detecting and how should we report it?  Uniform guidelines for reporting results from studies of preschool vision screening. J AAPOS. 2003;7(5):314-316.

92.       Roorda A, Bobier WR, Campbell MC. An infrared eccentric photo-optometer. Vision Res. 1998;38(13):1913-1924.

93.       Roorda A, Campbell MC, Bobier WR. Slope-based eccentric photorefraction: theoretical analysis of different light source configurations and effects of ocular aberrations. J Opt Soc Am A. 1997;14(10):2547-2556.

94.       Roorda A, Campbell MC, Bobier WR. Geometrical theory to predict eccentric photorefraction intensity profiles in the human eye. J Opt Soc Am A. 1995;12(8):1647-1656.

95.       Campbell MC, Bobier WR, Roorda A. Effect of monochromatic aberrations on photorefractive patterns. J Opt Soc Am A. 1995;12(8):1637-1646.

96.       Bobier W. *Quantitative photorefraction using an off-center flash source. Am J Optom Physiol Opt. 1988;65:962-971.

97.       Bobier WR, Braddick OJ. Eccentric photorefraction: optical analysis and empirical measures. Am J Optom Physiol Opt. 1985;62(9):614-620.